Non-Instantaneous Impulsive Boundary Value Problems Containing Caputo Fractional Derivative of a Function with Respect to Another Function and Riemann–Stieltjes Fractional Integral Boundary Conditions

نویسندگان

چکیده

In the present article we study existence and uniqueness results for a new class of boundary value problems consisting by non-instantaneous impulses Caputo fractional derivative function with respect to another function, supplemented Riemann–Stieltjes integral conditions. The unique solution is obtained via Banach’s contraction mapping principle, while an result established using Leray–Schauder nonlinear alternative. Examples illustrating main are also constructed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional-order boundary value problems with Katugampola fractional integral conditions

*Correspondence: [email protected] Department of Mathematics, Eastern Mediterranean University, Gazimagusa, Turkish Republic of Northern Cyprus Abstract In this paper, we study existence (uniqueness) of solutions for nonlinear fractional differential equations with Katugampola fractional integral conditions. Several fixed point theorems are used for sufficient conditions of existence (u...

متن کامل

Higher order multi-point fractional boundary value problems with integral boundary conditions

In this paper, we concerned with positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions. We establish the criteria for the existence of at least one, two and three positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions by using a result from the theory of fixed...

متن کامل

Boundary value problems for nonlinear fractional differential equations with integral and ordinary-fractional flux boundary conditions

In this paper, we consider a new class of boundary value problems of Caputo type fractional differential equations supplemented with classical/nonlocal Riemann-Liouville integral and flux boundary conditions and obtain some existence results for the given problems. The flux boundary condition x′(0) = b cDβx(1) states that the ordinary flux x′(0) at the left-end point of the interval [0, 1] is p...

متن کامل

Numerical solution for boundary value problem of fractional order with approximate Integral and derivative

Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...

متن کامل

The Study ‎of ‎S‎ome Boundary Value Problems Including Fractional ‎Partial ‎Differential‎ Equations with non-Local Boundary Conditions

In this paper, we consider some boundary value problems (BVP) for fractional order partial differential equations ‎(FPDE)‎ with non-local boundary conditions. The solutions of these problems are presented as series solutions analytically via modified Mittag-Leffler functions. These functions have been modified by authors such that their derivatives are invariant with respect to fractional deriv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2021

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms10030130